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Abstract: 

Bioorthogonal chemistry is an effective tool for measuring metabolic pathways and cellular activity, yet 

its use is currently limited due to the difficulty of introducing probes past the cell membrane and into the 

cytoplasm, especially as more complex probes are desired. Here we present a simple and minimally 

perturbative technique to deliver functional probes of glycolysylation into cells using a nanostructured 

“nanostraw” delivery system. Nanostraws provide large scale intracellular access to cells through fluidic 

conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform 

can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness as 

a chemical modification strategy (peracetylation). We then show that for an azidosugar modified with a 

charged uridine diphosphate group (UDP) that prevents intracellular penetration, the nanostraw platform 

enables its direct delivery into cells, thus bypassing multiple enzymatic processing steps. By effectively 

removing the cell permeability requirement from the probe, the nanostraws expand the toolbox of 

bioorthogonal probes to study biological processes using a single, easy-to-use platform. 

Keywords: 

Drug delivery, Fluorescent probes, Glycosylation, Click chemistry, Nanotubes 

 

Introduction 

Metabolic labeling has become a critical tool for tracking the passage and function of biological substrates, 

yet has been limited by the difficulty of cellular delivery. Early experiments using radio-labeled analogs of 

glucose and nucleotides allowed researchers to identify their downstream biological products in 

metabolism and DNA replication1-2. More recently, metabolic labeling has been widely applied to study 

post-translational modifications (PTMs). PTM archetypes range from small functional group adornments 

such as phosphate and methyl groups to larger-scale assemblages such as ubiquitination and 

glycosylation3-4. By actively and reversibly modulating protein function, PTMs are essential for intracellular 

energy exchange, epigenetic memory, and signal transduction. As the study of PTMs has expanded, so too 

has the demand for observation of their localization and dynamics, driving the search for new functional 

metabolic analogs5-7.  
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Recently, a versatile approach has emerged, combining metabolic labeling with bioorthogonal chemistry8-

9. With this strategy, metabolic analogs bearing a sterically-minimized bioorthogonal functional group 

“handle” must be delivered into cells. Once inside the cytoplasm, the handle is specifically labeled with a 

fluorophore by a bioorthogonal ligation reaction. This method has been especially effective for protein 

glycosylation studies.  Natural glycosylation patterns are among the most complex and variable PTMs, 

composed of many unique monosaccharide subunits attached in linear and branching patterns. Their 

composition can vary dramatically, and these changes in composition correlate with dramatically altered 

phenotypes, as evidenced by the altered glycosylation status of cancer cells10. Bioorthogonal labeling 

provides the resolution, live-cell compatibility, and multiplexed detection necessary to map the 

relationship between glycosylation patterns and behavior in cells11-12. 

The key barrier to this flexible labeling scheme is delivery of the metabolic analogs through the cell 

membrane and into the cytoplasm. Chemical modifications or adjuvants such as peracetylation13-14 or 

permeabilizing agents7, 15-16 can help to increase delivery effectiveness, but are not universally applicable 

and may engender cytotoxicity17 and lower efficiency of labeling. Moreover, the kinetics of enzymatic 

reactions being probed with metabolic analogs are often unknown and the intracellular levels of a 

metabolite may require constant upkeep over several days9. Unfortunately, most intracellular delivery 

agents are designed for single-shot delivery of oligonucleotide cargo and are too disruptive to be 

repeatedly applied, making them significantly less effective for consistent, extended metabolic labeling. 

Without more effective strategies for delivery, the full range of bioorthogonal probes remains untapped 

and delivery of available probes is suboptimal. 

Here, we present a simple, non-perturbative technique to deliver poorly membrane permeable azido-

functionalized monosaccharides into cells where they can be metabolized onto glycoproteins and labeled 

using bioorthogonal chemistry18. This technique uses a nanostructured platform of supported hollow 

tubes, called nanostraws, which deliver membrane impermeable molecules directly into the cytoplasm 

with minimal cell disruption19-22. We first show that nanostraws enable the efficient delivery of N-

azidoacetylmannosamine (ManNAz) at comparable levels to what can be achieved by chemical 

modification (peracetylation). More importantly, we show that nanostraws enable the delivery of another 

metabolite, UDP-N-azidoacetylgalactosamine (UDP-GalNAz). This molecule is an intermediate in the 

glycosylation pathway and is currently lacking effective strategies for delivery in cultured mammalian 

cells, but with nanostraw delivery it can be further exploited as a carrier for complex functional groups or 

tags that are incompatible with upstream biosynthetic enzymes. By directly penetrating cells to deliver 

cargo into the cytoplasm, nanostraws represent a powerful new approach to introduce cell-impermeable 

bioorthogonal probes into cellular studies. We demonstrate this using azidosugars but nanostraws are 

cargo-agnostic, enabling generic delivery and unlocking the study of many other biological systems. 

Results and Discussion 

Nanostraw membranes are polycarbonate membranes with randomly arranged hollow pores spanning 

the thickness of the membrane19. The pores were created using a track-etching procedure, making them 

highly uniform along their length with well-controlled diameters. Following deposition of aluminum oxide 

by atomic layer deposition and two selective etching steps, a forest of nanostraws (~3*107cm-2) was 

formed on the membrane. The nanostraws themselves are hollow alumina tubes 100 nm in outer 
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diameter, 10 nm in wall thickness, and 1.5-2 µm in height. These tubes are embedded in the polycarbonate 

polymer substrate (Figure 1), making them stable and creating an attractive surface for cell adhesion.  

Due to mechanical forces, a fraction of the nanostraws will directly penetrate the cells cultured onto 

them21, 23, yet their small size and long leakage path largely limits cell perturbation19.  Penetrant 

nanostraws act as conduits across the membrane, enabling molecules in solution on one side of the 

membrane to diffuse through the nanostraws to the other side (Figure 1B). As substrates for cell culture, 

nanostraws and related nanowires are robust in their materials properties and generally non-toxic, 

although some perturbations in cell behavior have been observed24-26. Previous applications of 

nanostraws have included delivery of small molecules, DNA, membrane impermeable dyes19, and ions20-

21, 27.  

For delivery of azidosugars, the nanostraw membranes were assembled into devices consisting of a cell 

culture well, an adhesive layer, the nanostraw membrane, and a delivery chamber (Figure 1A, 

Supplemental Figure 1A). The cell culture well is a plastic tube with an approximately 8 mm inner diameter 

that holds 300 µL of culture media, but can be scaled up or down to accommodate lesser or greater 

numbers of cells (Supplemental Figure 1B). The nanostraw membrane, which is uniform over sizes up to 

several centimeters squared, is attached to the culture well with a ring of double-sided, biocompatible 

tape for the adhesive layer, providing a water-tight seal. The nanostraw membrane itself is approximately 

20 µm thick and serves as the cell culture substrate. The delivery chamber is then created using a second 

ring of double sided tape, to store approximately 20 µl of cargo solution. This assembled device allows for 

cells to be cultured onto the membrane with access to the cargo chamber through the nanostraw 

conduits. Control experiments were conducted with flat membranes with the same density of pores but 

no protruding nanostraws. Reagents to be delivered were pipetted beneath the nanostraw membrane, 

and allowed to diffuse into the cells.  

To demonstrate delivery of a bioorthogonal chemistry probe into cells using nanostraws we delivered 

ManNAz, which results in the introduction of azide groups onto sialylated cell surface proteins (Figure 1B). 

Upon incorporation onto surface glycoproteins, the azide moieties of metabolized ManNAz can be 

specifically labeled with fluorescent click chemistry probes (fluorophore- conjugated dibenzylcyclooctyne, 

DBCO). Importantly, a peracetylated derivative of ManNAz (Ac4ManNAz), shown to be orders of 

magnitude more effective in biosynthetic incorporation compared to the parent compound9, serves as a 

point of comparison for the efficacy of nanostraw delivery. The cell permeable Ac4ManNAz should label 

cell glycans when presented to cells in solution, while equal concentrations of the less permeable ManNAz 

would require a delivery method such as the nanostraws to provide the same labeling. Confirming earlier 

work, Chinese hamster ovary (CHO) cells incubated in control tests in standard 96-well plates with 

Ac4ManNAz (100 µM for 48 hours, 10 µM Cy3 DBCO label) showed a characteristic cell-surface 

fluorescence profile after the bioorthogonal labeling reaction (Supplemental Figure 2A). However, cells 

incubated with cell-impermeant ManNAz under identical conditions showed only faint fluorescent 

staining (Supplemental Figure 2B). 

To prepare devices for nanostraw delivery, nanostraw and flat membrane control devices were prepared 

by a plasma clean (<1 minute) after assembly, followed by an overnight UV light exposure and 3 hour 

incubation with 50 µL poly-lysine or poly-ornithine (150 µM). Following a 3x wash in PBS, 100,000 CHO 
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cells were resuspended in DMEM supplemented with 10% FBS and plated on the device. A 20 µL drop of 

ManNAz solution was placed on parafilm and the device was placed on top, to fill the delivery chamber.  

Nanostraw delivery of ManNAz was tested for two delivery time scales: a long incubation of 48 hours 

(Figure 2A-C) and a short incubation of 4 hours (Figure 2D-F). The ManNAz concentration in PBS was either 

1 mM for the long incubation or 10 mM for the short incubation. After incubation, the media was removed 

from the culture chamber and the delivery chamber was washed in PBS to remove excess ManNAz 

solution. The culture well was incubated in PBS with 1% FBS for 5 minutes, rinsed 2x with PBS and 

incubated in 50 µM Carboxyrhodamine 110 DBCO or Cy3 DBCO in phenol red-free DMEM for 15 minutes 

at 37 °C. Following DBCO incubation, the culture chamber was rinsed 3x with PBS and incubated in 0.25% 

Trypsin with EDTA for 10 minutes, and the trypsinized cells were replated onto cover slips coated with 

poly-lysine. After 4 hours to allow cells to adhere, slides were washed in PBS to remove excess fluorescent 

labels, fixed in 4% paraformaldehyde, and mounted for imaging. 

Imaging of cell-impermeable ManNAz delivery after the long 48 hour incubation shows a distinct contrast 

between strong DBCO labeling after ManNAz delivery on nanostraw devices (Figure 2A) relative to the 

weaker fluorescence observed on flat membrane devices (Figure 2B). The line profile trace across cells 

also demonstrates a substantial increase in fluorescence intensity on nanostraw devices relative to flat 

membrane devices (Figure 2C). Some variations in cell-to-cell fluorescence were observed as nanostraw 

based delivery systems have demonstrated an inherent spread in delivery cell-to-cell21, and the 

nanostraws show markedly increased retention of cells due to improved cell adhesion to nanostraws and 

similar nanowires during washing steps28. A small amount of ManNAz uptake is observed even on flat 

membrane devices due to non-specific uptake mechanisms, but non-specific uptake is unreliable and the 

characteristic cell-border fluorescence profile is much weaker. 

Delivery using the shorter 4 hour incubation reveals that cell-surface labeling had already occurred on 

nanostraw devices (Figure 2D) in contrast to indistinct labeling on flat membrane devices (Figure 2E). The 

raw difference in intensity is lower at 4 hours compared to 48 hours (Figure 2F), which is consistent with 

increased labeling of accumulated azido groups over the longer time period. 

These results show improved delivery efficiency of poorly permeable azidosugars with nanostraws. While 

a peracetylated, cell-permeable ManNAz analog was available, the true promise of nanostraws lies in 

facile delivery of metabolites that are difficult or infeasible to chemically modify. Within this class of 

metabolites are UDP-modified sugars, which bear a negatively charged diphosphate linkage that limits cell 

permeability. UDP-sugars are biosynthesized through multiple enzymatic steps from the free 

monosaccharide to be directly attached onto proteins via glycosyltransferases29.  

Direct delivery of UDP-sugars into the cytoplasm addresses two critical shortcomings. First, by delivering 

cell-impermeable secondary metabolites such as UDP-sugars and not their precursors, the activity of 

specific downstream enzymes within the pathway, glycosyltransferases in this instance, can be directly 

probed. Second, although complex functional groups such as UDP groups and fluorophores can be easily 

attached to free monosaccharides, the resulting modified, bulkier metabolite is often rejected by one or 

more of the enzymes required for biosynthetic processing and incorporation of the metabolite into its 

end-product. By directly delivering UDP-sugars into the cytoplasm and bypassing multiple biosynthetic 
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steps, the repertoire of unnatural functionalities to be incorporated onto nascent glycoproteins is freed 

from many enzymatic compatibility constraints.  

We examined whether nanostraws are effective for a larger variety of unnatural substrates by delivering 

three unnatural N-acetyl galactosamine derivatives: peracetylated N-azidoacetylgalactosamine 

(Ac4GalNAz), N-azidoacetylgalactosamine (GalNAz), and the uridine diphosphate modified N-

azidoacetylgalactosamine (UDP-GalNAz), into GFP-labeled CHO cells (Figure 3A). These three molecules 

can potentially enter the N-acetylgalactosamine salvage pathway at different points30. While UDP-GalNAz 

enters at a much later stage than GalNAz, it is significantly less cell permeable and delivery remains a 

critical challenge.    

We studied delivery of all three forms of GalNAz sugars through both nanostraw and flat-membrane 

control devices. For each azidosugar, 500 µM solutions in PBS were added to the delivery chambers, 

incubated for an intermediate time period of 24 hours with 50,000 cells, then washed and labeled with 

10 µM Cy3 DBCO for 20 minutes. Compared to the negative control condition of cells with no added 

azidosugars incubated with DBCO (Figure 3B, inset – GFP fluorescence), the azidosugars were delivered 

and labeled with varying success on nanostraws and flat membranes (Figure 3C-D, inset – GFP 

fluorescence). Using the nanostraws, all three sugars, including negatively charged and therefore highly 

impermeable UDP-GalNAz, entered the cells and were metabolized onto cell surface glycoproteins to 

produce the characteristic cell border fluorescence upon DBCO labeling (Figure 3C). GalNAz and 

Ac4GalNAz delivery using nanostraws were both nearly 100% efficient in CHO cells and comparable to 

ManNAz delivery, while UDP-GalNAz delivery was nearly as effective, with only a small number of cells 

appearing to have weak or no fluorescence.  

On flat control membranes, only Ac4GalNAz, being cell-permeable, was seen around cells after DBCO 

labeling (Figure 3D). Both GalNAz and UDP-GalNAz-delivered cells showed only non-specific fluorescence 

when the sugar was added through a flat membrane, with a similar fluorescence profile as cells with no 

added sugars at all (Figure 3B). In these two negative conditions, GalNAz and UDP-GalNAz delivered 

through flat membranes, as well as the sugar-free condition, some fluorescence was observed, likely due 

to nonspecific uptake of DBCO or labeling of debris. Nanostraws appear to further promote some 

nonspecific labeling in the form of bright, central spots of fluorescence, but this form of labeling is 

accompanied by the circular, cell border labeling characteristic of bioorthogonal labeling of azido-

modified glycoproteins, except in rare cases with UDP-GalNAz delivery. 

These results show that physical cell penetration and delivery through nanostraws is an effective method 

to overcome limitations of cell-impermeant labeling molecules in metabolic labeling studies.  Nanostraw 

delivery of membrane impermeable ManNAz, a well-characterized molecule for studying protein 

glycosylation, reproduced the effect of chemical modification at long and short-term delivery scales.  

The nanostraws also demonstrated the capacity to deliver UDP-GalNAz, an intermediate enzymatic 

byproduct of GalNAz metabolism which cannot be delivered by chemical means. The principle of 

bypassing the cell membrane using nanostraw delivery addresses an essential theme in the application of 

bioorthogonal probes – their potential to be poor substrates for the endogenous biosynthetic 

machinery31. For natural metabolites that require multiple biosynthetic processing and enzymatic steps, 
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a metabolic analog that is incompatible with just one enzyme in the pathway will not appear in 

endogenous biopolymer end-products. To bypass such an enzymatic bottleneck, metabolites further 

downstream in the pathway can be synthesized with the desired bioorthogonal handle. However, these 

downstream metabolites are naturally processed to be retained in cell compartments, often with charged 

groups such as UDP, and are therefore poorly cell permeable, thus requiring an intracellular delivery 

strategy such as the nanostraws32. 

Metabolic analogs that address other pathways of metabolism and post-translational modification are 

also excellent candidates for nanostraw delivery, including modified ATP, which can be used in 

conjunction with modified enzymes to discover new substrates for kinases but suffers from poor delivery 

options33, or synthetic cross-linkers or dimerizing agents, which can induce novel interactions in cells to 

study pathways with increased specificity34. Ultimately, the nanostraws represent a minimally 

perturbative delivery platform capable of delivering a range of freely-diffusing species, and are effective 

for sustained delivery for over 24 hours. Thanks to the availability of the plastic tubes used to define the 

cell culture area and the uniformity of the nanostraws themselves19, the platform is scalable; with delivery 

to cells using a larger nanostraw device, larger scale flow cytometry quantification or mass spectrometry 

experiments for proteomics are possible in the future. Finally, the nanostraws remove the cell 

permeability requirement for chemical probes to relax constraints on size and charge, allowing more 

diverse and effective chemical probes to be brought to bear on biological problems. 

Experimental Section 

Nanostraw and Device Fabrication 

Nanostraws were fabricated using a track-etched membrane template (GVS). The templates were 20 µm 

thick polycarbonate membranes with randomly arranged pores at a density of 3*107 cm-2. Track-etched 

membrane templates are generally available in large volumes at a single prescribed density of extremely 

thin pores only, and are then etched to the desired pore diameter in smaller batches. The nanostraw 

membranes in this study were etched to 100 nm as purchased. Compared to commercially available track-

etched membranes used for water filtration and other applications, the nanostraw membrane templates 

have relatively low porosity, with either a lower pore diameter than membranes with similar pore density 

or a low density than membranes with similar pore diameter. 

Using as purchased membranes, nanostraws were fabricated by coating the templates with atomic layer 

deposition (ALD) alumina. A 10-15 nm layer of alumina is conformally applied to both sides of the 

membrane template as well as the inner walls of the pores using 50 cycles of ALD. Each cycle uses 

alternating pulses of trimethylaluminum (TMA) and water (H2O) with a precursor pulse step of 0.015 s, an 

exposure step of 30 s, and a purge step of 60 s. The Savannah platform (Cambridge Nanotech) 

accommodates up to 4 inch wafer sized membranes, and the nanostraws are typically fabricated in smaller 

area batches to ensure uniformity. The nanostraws that protrude above the membrane were created by 

first etching one alumina coated surface of the membrane using a PlasmaQuest etcher and BCl3 and Cl2 

plasma (40 sccm BCl3, 30 sccm Cl2, 5 sccm Ar at 300 watts, 250 s) to expose the polycarbonate beneath. 

The polycarbonate is then removed using an oxygen plasma etch (SPI Plasma Prep III Solid State, 200 
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mTorr and 100 watts, 40 min). The alumina coating the walls of the membrane pores remains to form the 

free-standing nanostraws. 

The device materials consist of the nanostraw membranes, plastic tubing, and two rings of double-sided 

tape (Digi-key Electronics, 3M Acrylic Foam). The double sided tape was laser-cut to form regular rings, 

and the plastic tubing was polished on both ends to ensure that a water-tight seal is formed. For the lower 

ring of double-sided tape forming the delivery chamber, the plastic covering protecting the lower side of 

the tape is not removed to prevent the device from sticking to surfaces and allow access to the delivery 

chamber to pipette cargo solutions. Besides the nanostraws, the other materials used in the device can 

be easily obtained in bulk quantities and assembled. 

Azidosugar Synthesis 

ManNAz, Ac4ManNAz, GalNAz, Ac4GalNAz, and UDP-GalNAz were synthesized according to literature 

procedure29, 35. 

Cell Culture and Delivery Assays 

CHO cells and GFP-expressing CHO cells were cultured in DMEM supplemented with 10% FBS and 1% 

Penicillin/Streptomycin. Before CHO cells were added to nanostraw devices for delivery, devices were 

placed in oxygen plasma to sterilize, moved to the tissue culture hood, and further exposed to UV 

overnight to ensure sterility. A 2-3 hour incubation with 50 uL poly-lysine or poly-ornithine promoted cell 

adhesion to the nanostraws. After 3x PBS wash to remove excess solution, CHO cells were trypsinized 

using 0.25% trypsin, resuspended in DMEM, and added to the cell culture well. At the device diameter 

used, the delivery chamber stores 20 µL of cargo solution. To fill the delivery chamber, solution was placed 

in a droplet on parafilm, which prevents the solution from spreading. Slowly placing the device on top of 

the droplet ensured that air bubbles were minimized. After the delivery chamber was filled, the devices 

were placed in a humidified petri-dish and returned to the incubator at 37°C. For long term deliveries (>24 

hr) the cargo solution may evaporate and it was necessary to replenish the chamber.  

After incubation, cells are labeled using DBCO fluorophores (Click Chemistry Tools) by first washing away 

excess cargo solution from the delivery chamber with a PBS wash. Following a short blocking step of the 

cell culture chamber using 1% BSA in PBS and 2x PBS wash, DBCO fluorophores were incubated in the cell 

culture chamber for 15 min at 37°C. After a final 3x PBS wash, the cells were prepared for imaging. Due to 

the small volume of the cell culture wells as well as the fragile nature of the nanostraw membrane, 

thorough washing was difficult and care was taken to remove as much liquid as possible without 

puncturing the nanostraw membrane. 

To image cells, cover slips were first prepared by placing a drop of poly-lysine on the cover slip for 15 

minutes. The cover slips were then washed to remove excess solution. DBCO labeled and washed cells 

were resuspended by adding trypsin to the cell culture well. Cells cultured on the flat membranes were 

susceptible to loss during wash steps, while nanostraw-adhered cells were trypsinized for longer time 

periods (~5-10 minutes) to resuspend. After trypsinization, cells were resuspended in media and added 

to the cover slips. Following a 4 hour adherence period, the cover slips were further washed in PBS to 

remove excess DBCO fluorophores, a necessary step due to the washing difficulty described earlier. Cells 
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were then fixed with 4% paraformaldehyde, mounted on a glass slide, and imaged using a confocal 

microscope (Zeiss Axiovert 200 M), photometrics Cascade 512B digital camera (Roper Scientific) and 

MetaMorph software (Molecular Devices).  
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Figures 

 

Figure 1. Nanostraw device used for azidosugar delivery. A) The device consists of four parts: a cell culture 

well, the adhesive layer, the nanostraw membrane, and a delivery chamber. The adhesive produces a 

water-tight seal between the cell culture well and the membrane, so that cargo placed in the delivery 

chamber below can only enter the culture well through the membrane pores. If a nanostraw membrane 

is used and the nanostraws have cellular access, then the cargo may pass directly into cells through 

penetrating nanostraws. B) Upon successful entry into the cell, an azidosugar such as ManNAz is 

enzymatically converted into sialic acid groups and incorporated onto cell surface glycoproteins. These 

groups retain the azide moiety, which can be targeted and labeled using a DBCO fluorophore. 
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Figure 2. ManNAz delivery using nanostraws. A,B) Cells were labeled and imaged after a long term 48 hr 

incubation of ManNAz on nanostraw and flat membrane devices. C) A line trace shows a strong difference 

in fluorescent intensity between nanostraw delivery and nonspecific uptake. D,E,F) This difference was 

also observed at 4 hrs albeit at reduced intensity. 
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Figure 3. Delivery of modified unnatural UDP-sugars. A) Flat membrane and nanostraw delivery were 

performed using three sugars, GalNAz, cell-permeable Ac4GalNAz, and negatively charged cell 

impermeable UDP-GalNAz. B) Cells incubated with DBCO fluorescent probes but no azidosugar showed 

some non-specific labeling but no characteristic cell border fluorescence (inset – GFP fluorescence). C) 

When nanostraws were used for delivery, all three forms of GalNAz successfully entered the cells to be 

incorporated onto surface glycoproteins and labeled. D) On flat, control membranes, neither GalNAz nor 

UDP-GalNAz was successfully delivered into cells, but the cell-permeable Ac4GalNAz was metabolized and 

successfully labeled using the click chemistry reaction.  
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